
Algorithms for solving two-
player normal form games

Recall: Nash equilibrium

•  Let A and B be |M| x |N| matrices.
•  Mixed strategies: Probability distributions over M and N
•  If player 1 plays x, and player 2 plays y, the payoffs are

xTAy and xTBy
•  Given y, player 1’s best response maximizes xTAy
•  Given x, player 2’s best response maximizes xTBy
•  (x,y) is a Nash equilibrium if x and y are best responses

to each other

Finding Nash equilibria
•  Zero-sum games

– Solvable in poly-time using linear programming
•  General-sum games

– PPAD-complete
– Several algorithms with exponential worst-case

running time
•  Lemke-Howson [1964] – linear complementarity problem
•  Porter-Nudelman-Shoham [AAAI-04] = support enumeration
•  Sandholm-Gilpin-Conitzer [2005] - MIP Nash = mixed integer

programming approach

Zero-sum games
•  Among all best responses, there is always at least

one pure strategy
•  Thus, player 1’s optimization problem is:

•  This is equivalent to:

•  By LP duality, player 2’s optimal strategy is given
by the dual variables

General-sum games:
Lemke-Howson algorithm

•  = pivoting algorithm similar to simplex algorithm
•  We say each mixed strategy is “labeled” with the

player’s unplayed pure strategies and the pure best
responses of the other player

•  A Nash equilibrium is a completely labeled pair
(i.e., the union of their labels is the set of pure
strategies)

Lemke-Howson Illustration
Example of label definitions

Lemke-Howson Illustration
Equilibrium 1

Lemke-Howson Illustration
Equilibrium 2

Lemke-Howson Illustration
Equilibrium 3

Lemke-Howson Illustration
Run of the algorithm

Lemke-Howson Illustration

Lemke-Howson Illustration

Lemke-Howson Illustration

Lemke-Howson Illustration

Simple Search Methods for
Finding a Nash Equilibrium

Ryan Porter, Eugene Nudelman & Yoav Shoham

[AAAI-04, extended version on GEB]

A subroutine that we’ll need when
searching over supports

(Checks whether there is a NE with given supports)

Solvable by LP

Features of PNS = support
enumeration algorithm

  Separately instantiate supports
  for each pair of supports, test whether there is a NE with those

supports (using Feasibility Problem solved as an LP)
  To save time, don’t run the Feasibility Problem on suppprts that

include conditionally dominated actions
  An ai is conditionally dominated, given if:

  Prefer balanced (= equal-sized for both players) supports
  Motivated by a theorem: any nondegenerate game has a NE with

balanced supports
  Prefer small supports

  Motivated by existing theoretical results for particular distributions
(e.g., [MB02])

Pseudocode of two-player PNS algorithm

PNS: Experimental Setup

  Most previous empirical tests only on “random” games:
  Each payoff drawn independently from uniform distribution

  GAMUT distributions [NWSL04]
  Based on extensive literature search
  Generates games from a wide variety of distributions
  Available at http://gamut.stanford.edu

D1 Bertrand Oligopoly D2 Bidirectional LEG, Complete Graph

D3 Bidirectional LEG, Random Graph D4 Bidirectional LEG, Star Graph

D5 Covariance Game: ρ = 0.9 D6 Covariance Game: ρ = 0

D7 Covariance Game: Random ρ2 [-1/(N-1),1] D8 Dispersion Game

D9 Graphical Game, Random Graph D10 Graphical Game, Road Graph

D11 Graphical Game, Star Graph D12 Location Game

D13 Minimum Effort Game D14 Polymatrix Game, Random Graph

D15 Polymatrix Game, Road Graph D16 Polymatrix Game, Small-World Graph

D17 Random Game D18 Traveler’s Dilemma

D19 Uniform LEG, Complete Graph D20 Uniform LEG, Random Graph

D21 Uniform LEG, Star Graph D22 War Of Attrition

PNS: Experimental results on 2-player games
  Tested on 100 2-player, 300-action games for each of 22
distributions
  Capped all runs at 1800s

Mixed-Integer Programming
Methods for Finding Nash Equilibria

Tuomas Sandholm, Andrew Gilpin, Vincent Conitzer

[AAAI-05]

Motivation of MIP Nash

•  Regret of pure strategy si is difference in
utility between playing optimally (given other
player’s mixed strategy) and playing si.

•  Observation: In any equilibrium, every pure
strategy either is not played or has zero regret.

•  Conversely, any strategy profile where every
pure strategy is either not played or has zero
regret is an equilibrium.

MIP Nash formulation
•  For every pure strategy si:

–  There is a 0-1 variable bsi such that
•  If bsi = 1, si is played with 0 probability
•  If bsi = 0, si is played with positive probability, but it must have 0

regret
–  There is a [0,1] variable psi indicating the probability

placed on si
–  There is a variable usi indicating the utility from playing si
–  There is a variable rsi indicating the regret from playing si

•  For each player i:
–  There is a variable ui indicating the utility player i

receives
–  There is a constant that captures the diff between her max

and min utility:

MIP Nash formulation:
Only equilibria are feasible

MIP Nash formulation:
Only equilibria are feasible

•  Has the advantage of being able to specify
objective function
– Can be used to find optimal equilibria (for

any linear objective)

MIP Nash formulation

•  Other three formulations explicitly make
use of regret minimization:

Formulation 2. Penalize regret on strategies that
are played with positive probability

Formulation 3. Penalize probability placed on
strategies with positive regret

Formulation 4. Penalize either the regret of, or the
probability placed on, a strategy

MIP Nash: Comparing formulations

These results are from a newer,
extended version of the paper.

Games with medium-sized supports
•  Since PNS performs support enumeration, it should

perform poorly on games with medium-sized support
•  There is a family of games such that there is a single

equilibrium, and the support size is about half
–  And, none of the strategies are dominated (no cascades either)

MIP Nash: Computing optimal equilibria
•  MIP Nash is best at finding optimal equilibria
•  Lemke-Howson and PNS are good at finding sample equilibria

–  M-Enum is an algorithm similar to Lemke-Howson for enumerating all
equilibria

•  M-Enum and PNS can be modified to find optimal equilibria by
finding all equilibria, and choosing the best one
–  In addition to taking exponential time, there may be exponentially many

equilibria

Algorithms for solving other
types of games

Structured games
•  Graphical games

–  Payoff to i only depends on a subset of the other agents
–  Poly-time algorithm for undirected trees (Kearns,

Littman, Singh 2001)
–  Graphs (Ortiz & Kearns 2003)
–  Directed graphs (Vickery & Koller 2002)

•  Action-graph games (Bhat & Leyton-Brown 2004)
–  Each agent’s action set is a subset of the vertices of a

graph
–  Payoff to i only depends on number of agents who take

neighboring actions

Games with more than two players
•  For finding a Nash equilibrium

–  Problem is no longer a linear complementarity problem
•  So Lemke-Howson does not apply

–  Simplicial subdivision
•  Path-following method derived from Scarf’s algorithm
•  Exponential in worst-case

–  Govindan-Wilson
•  Continuation-based method
•  Can take advantage of structure in games

–  Non globally convergent methods (i.e. incomplete)
•  Non-linear complementarity problem
•  Minimizing a function
•  Slow in practice

•  What about strong Nash equilibrium or coalition-proof
Nash equilibrium?

